Stability Analysis and Error Estimates of an Exactly Divergence-Free Method for the Magnetic Induction Equations∗
نویسندگان
چکیده
In this paper, we consider an exactly divergence-free scheme to solve the magnetic induction equations. This problem is motivated by the numerical simulations of ideal magnetohydrodynamic (MHD) equations, a nonlinear hyperbolic system with a divergence-free condition on the magnetic field. Computational methods without satisfying such condition may lead to numerical instability. One class of methods, constrained transport schemes, is widely used as divergence-free treatments. So far there is not much analysis available for such schemes. In this work, we take an exactly divergence-free scheme proposed by Li and Xu [12] as a candidate of the constrained transport schemes, and adapt it to solve the magnetic induction equations. For the resulting scheme applied to the equations with a constant velocity field, we carry out von Neumann analysis for numerical stability on uniform meshes. We also establish the stability and error estimates based on energy methods. In particular, we identify the stability mechanism due to the spatial and temporal discretizations, and the role of the exactly divergence-free property of the numerical solution for stability. The analysis based on energy methods can be extended to non-uniform meshes, and they can also be applied to the magnetic induction equations with a variable velocity field, which is more relevant to the MHD simulations.
منابع مشابه
Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations
Ideal magnetohydrodynamic (MHD) equations consist of a set of nonlinear hyperbolic conservation laws, with a divergence-free constraint on the magnetic field. Neglecting this constraint in the design of computational methods may lead to numerical instability or nonphysical features in solutions. In our recent work (Journal of Computational Physics 230 (2011) 48284847), second and third order ex...
متن کاملCentral discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field
In this paper, central discontinuous Galerkin methods are developed for solving ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods designed for hyperbolic conservation laws on overlapping meshes, and use different discretization for magnetic induction equations. The resulting schemes carry many features of standard central dis...
متن کاملLocally divergence-free central discontinuous Galerkin methods for ideal MHD equations
In this paper, we propose and numerically investigate a family of locally divergence-free central discontinuous Galerkin methods for ideal magnetohydrodynamic (MHD) equations. The methods are based on the original central discontinuous Galerkin methods (SIAM Journal on Numerical Analysis 45 (2007) 2442-2467) for hyperbolic equations, with the use of approximating functions that are exactly dive...
متن کاملConvergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the MHD system
We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition ∆t ∼ h, we obtain error estimates in L of order O(∆t + h) where m is the degree of the local polynomials.
متن کاملIsogeometric Divergence-conforming B-splines for the Steady Navier-Stokes Equations
We develop divergence-conforming B-spline discretizations for the numerical solution of the steady Navier-Stokes equations. These discretizations are motivated by the recent theory of isogeometric discrete differential forms and may be interpreted as smooth generalizations of Raviart-Thomas elements. They are (at least) patchwise C and can be directly utilized in the Galerkin solution of steady...
متن کامل